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The hypertrophic growth of cardiac myocytes is a highly dynamic process that underlies physiological and
pathological adaptation of the heart. Accordingly, a better understanding of the molecular underpinnings of
cardiac myocyte hypertrophy is required in order to fully appreciate the causes and functional consequences
of the changes in the size of the healthy and diseased heart. Hypertrophy is driven by increases in cardiacmyocyte
protein, which must be balanced by cellular ability to maintain protein quality in order to avoid maladaptive
accumulation of toxic misfolded proteins. Recent studies have shown that the endoplasmic reticulum (ER),
which, in cardiac myocytes, comprises the sarco/endoplasmic reticulum (SR/ER), is the site of most protein
synthesis. Thus, the protein quality controlmachinery located at the SR/ER is likely to be an important determinant
of whether the heart responds adaptively to hypertrophic growth stimuli. The SR/ER-transmembrane protein,
ATF6, serves a critical protein quality control function as a first responder to the accumulation of potentially
toxic, misfolded proteins. Misfolded proteins transform ATF6 into a transcription factor that regulates a gene
program that is partly responsible for enhancing protein quality control. Two ATF6-inducible genes that have
been studied in the heart and shown to be adaptive are RCAN1 and Derl3, which encode proteins that decrease
protein-folding demand, and enhance degradation of misfolded proteins, respectively. Thus, the ATF6-regulated
SR/ER protein quality control system is important for maintaining protein quality during growth, making ATF6,
and other components of the system, potentially attractive targets for the therapeutic management pathological
cardiac hypertrophy. This article is part of a Special Issue entitled “Protein Quality Control, the Ubiquitin
Proteasome System, and Autophagy”.

© 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

The heart plays a critical role as a pump, propelling blood to all parts of
the body in precisely the quantities necessary to match the needs of the
ghts reserved.
organism. Maintaining efficient cardiac function under physiological, as
well as pathological conditions, is intimately linked to the heart's ability
to change size, which, in the adult, is driven mainly by cardiac myocyte
atrophy or hypertrophy [1]. For example many cardiac pathologies
are associated with hypertrophic growth of cardiac myocytes. Although
potentially compensatory at first, pathological hypertrophy often leads
to an eventual failure of the heart to perform its function as a pump,
and is therefore considered maladaptive [2]. Since pathological cardiac
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hypertrophy often precedes heart failure, a potentially powerful
therapeutic approach would be to intervene with the pathologic
hypertrophic growth process, which has been shown to avert the life-
threatening heart failure [3].

The critical nature of cardiac myocyte hypertrophy under both
physiological and pathological conditions has driven numerous studies
aimed at gaining a better understanding of the molecular mechanisms
by which cardiac myocytes exhibit such dynamic growth responses
[2,4]. In part, and not surprisingly, such studies have demonstrated that
increases in cardiac myocyte size require increases in the quantity of
cardiac myocyte protein [5–9]. Moreover, in order to avert cell death,
increases in cardiac myocyte growth are associated with increases in
protein quantity that must be balanced by cellular ability to supervise
and manage the quality of new protein [10] (Fig. 1A), which requires
correct protein folding, as well as the degradation of potentially toxic
terminally misfolded proteins [11].

2. The SR/ER as a major site of protein synthesis

It has long been believed that about 2/3 of proteins are translated
on cytosolic ribosomes, while the remaining 1/3, comprising secreted
Fig. 1.Balancing protein quantity andquality at the sarco/endoplasmic reticulumof cardiac
myocytes: Panel A — Balancing protein quantity and quality is required for adaptive
responses to growth stimuli: Upon a growth stimulus, if protein synthesis increases
without a coordinate increase in the ability to monitor and control protein quality (left),
the response ismaladaptive due to the accumulation of toxicmisfolded proteins. However,
when increases in protein synthesis are balancedwith the cellular ability to control protein
quality (right), the response is adaptive. Panel B — ATF6 is a component of the SR/ER
protein quality control network: ATF6 resides in the SR/ER of cardiac myocytes
( ). Accumulation of misfolded proteins in the ischemic or hypertrophic heart results in
the translocation of ATF6 to theGolgi apparatus ( ), where it is cleaved by transmembrane
proteases ( ), which liberates a cytosolic, 50kD fragment. The 50kD fragment of ATF6 has
a nuclear localization sequence that facilitates the translocation of ATF6 to the nucleus,
where it binds to specific elements in the regulatory regions of ATF6-responsive genes
and regulates the ATF6 gene program ( ).
and membrane proteins, are translated on SR/ER-associated ribosomes
[12–14]. In terms of the protein synthesis that underlies cardiac myocyte
hypertrophy, this concept has resulted in emphasis being focusedmainly
on the protein quantity and quality control machinery located in the
cytosol [15–19]. However, recent paradigm-shifting studies have shown
that, in addition to secreted and membrane proteins, ribosomes asso-
ciated with the ER are also responsible for translation of many cytosolic
and nuclear proteins [20]. For example, while not studied in cardiac
myocytes, in model cell lines, as much as 96% of the transcripts encoding
cytosolic proteins are associated with, and translated by ER-bound
ribosomes [21]. Furthermore, the rate of protein synthesis by ER-bound
ribosomes exceeds that of cytosolic ribosomes by up to 4-fold, indicating
that the ER is a privileged site for protein synthesis [22]. Thus, ER-bound
ribosomes play a global role in cellular protein synthesis. Consequently,
the protein quality control machinery associated with the SR/ER is likely
to play an important part in determining whether hypertrophic cardiac
myocyte growth is adaptive or maladaptive (Fig. 1A) [23].

The SR/ER in cardiacmyocytes has an elaborate protein quality control
system, many of the details of which were elucidated during studies of
secreted and membrane protein synthesis, ER stress, and the unfolded
protein response, reviewed in [11,24]. Most secreted and membrane
proteins are co-translationally translocated across the SR/ER membrane,
afterwhich they are folded and furthermodified [25–27]. Properly folded
proteins are then transported to the Golgi, where they are sorted to their
final destinations; however, misfolded proteins are not sorted, but are
instead degraded before they can enter the Golgi apparatus [28–30].
Since misfolded proteins can be toxic, their degradation is considered
adaptive. Thus, in response to growth stimuli, increased protein synthesis
at the SR/ERmust be balanced by the ability to manage protein quality in
order to achieve adaptive growth [31] (Fig. 1A).

3. ATF6 and protein quality control in the SR/ER

An elaborate regulatory network associated with the SR/ER is
responsible for managing protein quality at this location; essential
elements of the network are three trans-ER membrane proteins,
activating transcription factor 6 (ATF6), protein kinase R [PKR]-like
ER kinase (PERK), and inositol requiring enzyme (IRE)-1, which
serve as the proximal effectors of ER stress [32]. The three proximal
effectors of ER stress are activated with different strengths and time
courses by various ER stresses [33]. In response, ATF6, IRE-1, and PERK
regulate the expression of common, and unique genes, the products of
which can be oriented toward ER stress relief, or, if the stress cannot
be resolved, toward cell death. Although all of the effectors can serve
adaptive, as well as maladaptive roles, among the three, ATF6 exerts
mainly adaptive functions in most cell types examined to date [34,32,
35,36]. The 90 kD form of ATF6 is a single-pass SR/ER-transmembrane
protein (Fig. 1B, ) that monitors the folding status of proteins made
in the SR/ER. If protein synthesis outpaces protein-folding capacity,
ATF6 senses the accumulation of misfolded proteins, a situation
sometimes called ER stress, then translocates to the Golgi (Fig. 1B, ),
where it is cleaved by the Golgi-localized proteases, SP1 and SP2 [37].
The resulting 50 kD cytosolic fragment translocates to the nucleus
(Fig. 1B, ), binds to elements in ATF6-responsive genes, and regulates
their expression (Fig. 1B, ). Thus, activatedATF6 is an important element
of the unfolded protein response.

The 50kD form of ATF6 is, itself, subject to regulation by proteasome-
dependent protein quality control, most likely, in the nucleus. Prior to its
activation, ATF6 is a relatively stable protein that is anchored in the SR/ER
[38]. However, after its activation, and translocation to the nucleus, the
50 kD form of ATF6 is rapidly degraded. In fact, the rapid degradation
of activated ATF6, which can be slowed by proteasome inhibitors, is
coupled to the engagement of ATF6 in the transcriptional process [39].
Mapping studies have revealed an 8-amino acid region residing in the
transcriptional activation domain of ATF6 that is responsible for ATF6-
mediated gene induction, as well as its rapid degradation [40]. Thus,
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the ability of ATF6 to induce genes is tightly temporally regulated by
virtue of an obligate coupling of its ability to activate transcription
with its rapid degradation.

To examine the function of ATF6 in the heart, a transgenic (TG)
mouse line in which ATF6 can be activated conditionally in cardiac
myocytes, was generated [41]. Using this mouse model it was shown
that, upon ATF6 activation, many prototypical ER stress response
genes were induced, even though the half-life of transgene-encoded
ATF6 in the mouse heart decreased, consistent with the coupling of
ATF6 transcriptional induction with degradation. Upon activation,
ATF6 protected the heart from ischemic damage, in vivo. ATF6 has
also been shown to be adaptive in amousemodel of pressure overload
hypertrophy [42]. Transcript profiling showed that among the numerous
genes induced by ATF6 in the heart were some that were not previously
known to be ATF6-inducible, but which could contribute to the adaptive
effects of ATF6 in the heart [43]. One such gene encodes regulator of
calcineurin 1 (RCAN1),which is amoderator of nuclear factor of activated
T cells (NFAT) activity in most eukaryotic cells [44].

4. ATF6 as a regulator of calcineurin/NFAT signaling in
cardiac myocytes

Cardiac pathologies, including cardiac hypertrophy and myocardial
ischemia, can increase cytosolic calcium in cardiac myocytes, which
activates the cytosolic phosphatase, calcineurin A (CnA) (Fig. 2, ). CnA
then dephosphorylates NFAT (Fig. 2, ), which translocates to the
nucleus and activates genes, some of which contribute to hypertrophic
growth [45]. NFAT also increases the expression of RCAN1, which can
bind to, and inhibit CnA (Fig. 2, ). Thus, RACN1 can decrease NFAT
Fig. 2. RCAN1 is an ATF6-inducible gene in the heart: Cardiac pathologies lead to increases
in cytosolic calcium in cardiac myocytes, which activates the calcineurin A (CnA) ( ), a
phosphatase that removes a critical phosphate from inactive NFAT. Dephosphorylated
NFAT translocates to the nucleus ( ),where it controls genes, someofwhich are responsible
for pathological hypertrophic cardiac myocyte growth, which can lead to heart failure. NFAT
also induces RCAN1 ( ), which inhibits CnA and, in so doing, inhibits the dephosphorylation
ofNFAT, thus shiftingNFATmore toward inactivation. ATF6,which is activatedduring certain
pathological conditions in the heart, can also transcriptionally induce RCAN1 ( ), which
provides a mechanism by which SR/ER protein quality control integrates functionally with
CnA/NFAT-mediated hypertrophic signaling.
activity and moderate the hypertrophic growth of cardiac myocytes.
Therefore, as an NFAT-inducible feedback inhibitor of NFAT-mediated
gene expression and cardiac myocyte growth, RCAN1 participates in
an autoregulatory signaling circuit that contributes to determining the
extent of cardiac hypertrophy [46]. Consistent with this concept was
the finding that overexpression of RCAN1 in transgenic mouse hearts
inhibited pressure overload-induced cardiac hypertrophy by inhibiting
CnA/NFAT signaling [47]. Moreover, when subjected to myocardial
infarction, the hearts of RCAN1 transgenic mice exhibited less cardiac
hypertrophy and reduced heart failure, consistent with growth mod-
ulating, adaptive roles for RCAN1 [48]. Cardiac pathology can also
activate ATF6 [42,49] (Fig. 2, ). The finding that RCAN1 was ATF6-
inducible in themouse heart suggested amechanismbywhichATF6and
the unfolded protein response, which are both activated in the pathologic
heart, might contribute to reducing the demands on the protein quality
machinery to ensure balanced adaptive responses to growth stimuli. In
this way, by inducing RCAN1, ATF6 can reduce the amount of protein
that must be properly folded. Thus, via RCAN1 induction, ATF6 indirectly
enhances protein quality by decreasing protein-folding demands [43].
5. ATF6 as a regulator of ER associated protein degradation (ERAD)
in cardiac myocytes

Another gene that is induced by ATF6 in the heart is degradation in
endoplasmic reticulum protein 3, or derlin-3 (Derl3), a member of a
family comprised of Derl1, Derl2, and Derl3. The derlin family has been
extensively studied in yeast, where the homologue of human Derl1,
Der1p, was found to be involved in protein degradation at the ER [50],
a process known as ER associated degradation, or ERAD, reviewed in
[51,52]. ERAD begins with translocation of misfolded proteins from
the SR/ER membrane, or lumen (Fig. 3, & ) to the cytosol (Fig. 3, ),
where they are ubiquitinated on the cytosolic side of the SR/ER [30] by
SR/ER-transmembrane ubiquitin (Ub) ligases (Fig. 3, ). The resulting
poly-ubiquitinated proteins are then degraded by proteasomes located
on the cytosolic face of the SR/ER (Fig. 3, ). ERAD reduces toxicity by
degrading terminally misfolded proteins and is, therefore, considered
adaptive [29].

Although the exact function of Derl3 in ERAD is not known, it is
believed that derlin family members facilitate the retro-translocation
of misfolded proteins from the ER lumen to the cytosolic face of the
ER, and that theywork in concert with SR/ER-transmembrane ubiquitin
ligases to recognize misfolded protein [53,54]. Among the Derlin family
members, only Derl3 was induced by ATF6 in cardiac myocytes, in vivo
[55]. In fact, in themouse heart, ATF6 induced Derl3 expression bymore
Fig. 3. ER associated degradation: Misfolded luminal andmembrane proteins in the SR/ER
( ) are retrotranslocated from the SR/ER into the cytosol ( ), where they are ubiquitinated
by one of several SR/ER-transmembrane ubiquitin ligases ( ). These ligases work in
conjunction with Derlin-3 (Derl3), which facilitates retrotranslocation, as well as misfolded
protein substrate recognition by the ubiquitin ligases. Following ubiquitination, misfolded
proteins are degraded by proteasomes associated with the cytosolic face of the SR/ER ( ).
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than 400-fold over control. Moreover, Derl3 was the only Derlin family
member thatwas induced in the infarctedmouse hearts, and in cultured
cardiac myocytes subjected to simulated ischemia. Thus, it was possible
that Derl3 overexpression might enhance ERAD, and in so doing,
might serve an adaptive role in the ischemic heart by decreasing
the accumulation of potentially toxic misfolded proteins, which is
known to occur during ischemia. Indeed, Derl3 overexpression de-
creased cardiac myocyte death in response to simulated ischemia,
while inhibiting endogenous Derl3 augmented cardiac myocyte death.
Moreover, Derl3 was shown to enhance ERAD in cardiac myocytes,
which contributed to the observed adaptive protection from cell death
upon ischemia/reperfusion. Thus, overexpression of Derl3 enhanced
ERAD in cardiac myocytes, which contributed to protection from cell
death. This adaptive response was, at least partly, due to the efficient
removal of potentially toxic misfolded proteins that accumulate in the
ischemic and hypertrophic heart, which would contribute to balancing
protein quantity and quality in cardiac myocytes.

6. Conclusions

The importance of protein synthesis in the SR/ER of cardiac myocytes
is just beginning to be understood. The proteins synthesized in the SR/ER
are likely to constitute a major proportion of proteins that comprise
cardiac myocytes. Dynamic changes in cardiac myocyte protein require
responses in protein synthesis that are balanced with protein quality
control machinery. The protein quality control machinery at the ER,
which, in large part, is managed by ATF6, is responsible for regulating
the expression of genes that canhelp balance protein qualitywith protein
quantity. Thus, since SR/ER protein synthesis plays a major role in the
plasticity with which cardiac myocytes can respond to environmental
cues, the SR/ER protein quality control machinery must also play a
major role in ensuring a balance between the amount of protein being
synthesis, and the ability of cardiac myocytes to fold newly synthesized
proteins. Therefore, in the heart, genes under the control of ATF6, such
as those that encode RCAN1 and Derlin-3, are likely to be involved in
determining whether cardiac myocytes survive responses to growth
stimuli. Accordingly, since the SR/ER protein quality control system is
likely to be a convergence point for signaling pathways that regulate
protein quantity and quality in cardiac myocytes, it is also a potentially
fertile ground for the development of new strategies aimed at managing
cardiac diseases that hinge on the regulation of protein quantity and
quality, such as pathological cardiac hypertrophy and heart failure.
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